Nonoscillation of First-Order Dynamic Equations with Several Delays
نویسندگان
چکیده
منابع مشابه
Nonoscillation of Second-Order Dynamic Equations with Several Delays
and Applied Analysis 3 In 10 , Leighton proved the following well-known oscillation test for 1.4 ; see 10, 11 . Theorem A see 10 . Assume that ∫∞ t0 1 A0 ( η )dη ∞, ∫∞ t0 A1 ( η ) dη ∞, 1.5 then 1.3 is oscillatory. This result for 1.4 was obtained by Wintner in 12 without imposing any sign condition on the coefficient A1. In 13 , Kneser proved the following result. Theorem B see 13 . Equation 1...
متن کاملUniform exponential stability of first-order dynamic equations with several delays
Keywords: Differential equations Difference equations Stability Bohl–Perron theorem Linear delay dynamic equations Time scales Uniform exponential stability a b s t r a c t This paper is concerned with the uniform exponential stability of ordinary and delay dynamic equations. After revealing the equivalence between various types of uniform exponential stability definitions on time scales with b...
متن کاملOscillation and Nonoscillation of Forced Second Order Dynamic Equations
Oscillation and nonoscillation properties of second order Sturm–Liouville dynamic equations on time scales attracted much interest. These equations include, as special cases, second order self-adjoint differential equations as well as second order Sturm–Liouville difference equations. In this paper we consider a given (homogeneous) equation and a corresponding equation with forcing term. We giv...
متن کاملOn oscillation and nonoscillation of second-order dynamic equations
New oscillation and nonoscillation criteria are established for second order linear equations with damping and forcing terms. Examples are given to illustrate the results.
متن کاملOscillation and Nonoscillation Criteria for Two-dimensional Time-scale Systems of First-order Nonlinear Dynamic Equations
Oscillation criteria for two-dimensional difference and differential systems of first-order linear difference equations are generalized and extended to nonlinear dynamic equations on arbitrary time scales. This unifies and extends under one theory previous linear results from discrete and continuous systems. An example is given illustrating that a key theorem is sharp on all time scales. 1. pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2010
ISSN: 1687-1839,1687-1847
DOI: 10.1155/2010/873459